
R Programming/ Statistical
Computing

Craig Alexander

Academic Year 2021-22

Week 6:

Advanced R Graphics using
ggplot2

Overview
An overview of ggplot2

https://youtu.be/aiTVeohI8Ec
Duration: 14m0s

The package ggplot2 provides an abstract and declarative environment for creating graphics.
The graphics system built into R is already quite powerful and flexible, but creating sophisticated graphics can be time-consuming andmany steps that could be performed automatically, like adding a legend, have to be performedmanually.Code producingmore complex visualisations tends be “procedural”: rather than describing how the visualisation shouldlook like, the code describes the detailed control flow of how the plot is constructed.
ggplot2 aims like the other packages in the tidyverse, and also like languages such as SQL, to be declarative: yourcode should just describe what the plot should look like, and not how it is being put together in a detailed step-by-stepmanner.
ggplot2 has become by far the post popular R package for graphics, with many extension packages being available.
ggplot2 has been ported to other languages and environments, such as Python or Julia.

R Graph Gallery
http://www.r-graph-gallery.com/portfolio/ggplot2-package/
The R Graph Gallery has a section entirely dedicated to ggplot2.

ggplot terms

This section gives an overview of key terms in the ggplot2 world. ggplot2 is based on the philosophy of a “layeredgrammar of graphics”: plots in ggplot2 are made up of at least one layer of geometric objects.

Tidy data
http://vita.had.co.nz/papers/layered-grammar.pdf
Wickham, H. (2010). A Layered Grammar of Graphics. Journal of Computational and Graphical Statistics. Volume 19,Number 1.
This paper explains some of the philosophy behind ggplot2.

Geometric objects A geometric object (or geom_<type>(...) in ggplot2 commands) controls what type of plot alayer contains. The are many different geometric objects: the most important ones are . . .
Geometry name Description Basic R equivalent Common aesthetics
geom_point Points (scatter plot) plot / points x, y, alpha, colour, shape,

size
geom_line Lines lines (after ordering) x, y, alpha, colour,(drawn left to right) linetype, size
geom_path Lines (drawn in original order) lines x, y, alpha, colour, group,

linetype, size
geom_abline Line (one line) abline intersept, slope, alpha,

colour, linetype, size
geom_hline Horizontal line abline yintercept, alpha,

colour, linetype, size
geom_vline Vertical line abline xintercept, alpha, colour,

linetype, size

2

https://youtu.be/aiTVeohI8Ec
http://ggplot2.tidyverse.org/
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Declarative_programming
http://www.ggplot2-exts.org/
http://ggplot.yhathq.com/
http://gadflyjl.org
http://www.r-graph-gallery.com/portfolio/ggplot2-package/
http://vita.had.co.nz/papers/layered-grammar.pdf

Geometry name Description Basic R equivalent Common aesthetics
geom_text Text text x, y, label, alpha, angle,

colour, size, family, hjust,
vjust, check_overlap

geom_label Text text x, y, label, alpha, angle(styled as label) , colour, size, family,
hjust, vjust, check_overlap

geom_rect Rectangle rect xmin, xmax, ymin, ymax,
alpha, colour, fill,
linetype, size

geom_polygon Polygon polygon x, y, alpha, colour, fill,
group, linetype, size

geom_ribbon Ribbon - x, ymin, ymax, alpha, colour,(for confidence bands) fill, group, linetype,size
geom_bar Bar plot barplot x, alpha, colour, fill,

linetype, size
geom_boxplot Boxplot boxplot x, y, alpha, colour, fill,

group, linetype,
shape, size

geom_histogram Histogram hist x, y, alpha, colour, fill,
linetype, size

geom_raster / Image plot image x, y, alpha, fill (both) and
geom_tile linetype, size, width(geom_tiles only)
geom_counter Contour lines contour x, y, z, alpha, colour, group,

linetype,size

There is a cheat sheet providing a detailed overview of the different geometries and data.
Aesthetics An aesthetic (or aes(...) in ggplot2 commands) controls which variables are mapped to which prop-erties of the geometric objects (like x-coordinates, y-coordinates, colours, etc.). The aesthetics available depend onthe geometric object. Aesthetics commonly available are . . .

Aesthetic Description
x x-coordinate
y y-coordinate
color or colour Colour (outline)
fill Fill colour
alpha Transparency (transparent 0 ≤ 𝛼 ≤ 1 opaque)
linetype Line type (“lty”)
symbol Plotting symbol (“pch”)
size Size of plotting symbol / font or line thickness

The help file for each geometry lists the available aesthetics.

Data Visualisation Cheat Sheet
https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf
Rstudio have put together a very handy and compact cheat sheet for ggplot2.

Background reading: Chapter 3 of R for Data Science
http://r4ds.had.co.nz/data-visualisation.html
Chapter 3 of R for Data Science gives an introduction to data visualisation using ggplot2.

3

https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf
http://r4ds.had.co.nz/data-visualisation.html

Background reading: Chapter 28 of R for Data Science
http://r4ds.had.co.nz/graphics-for-communication.html
Chapter 28 of R for Data Science focuses on the presentation of visual information (with a focus on ggplot2).

4

http://r4ds.had.co.nz/graphics-for-communication.html

Quick plots
The function qplot (or quickplot) provides a compact interface for simple ggplot2 graphics. Its syntax is meant toresemble the syntax of plot in basic R.
The basic syntax of qplot is qplot(x, y, data=data, geom=geom, ...). It plots y against x (taken from data)using the geometry geom. geom is specified as a string and without geom_ (for example geom="line" instead of
geom_line). qplot also accepts the optional arguments log, main, sub, xlab, ylab, xlim and ylim, which havesimilar effects as the arguments of that name have for plot in standard R graphics.
We can re-create the plot of life expectancy against health expenditure from last week using
load(url("https://github.com/UofGAnalyticsData/R/raw/main/Week%205/w5.RData"))
qplot(HealthExpenditure, LifeExpectancy,

data=health, colour=Region)

50

60

70

80

0 2000 4000 6000 8000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

We can already see a major advantage of using ggplot2: we don’t need to unclass Region and ggplot2 has alreadydrawn a legend for us.
ggplot2 also allows for a graphical parameter size, which controls the size of the plotting symbol (on a square-rootscale, so that the area of the plotting symbol is on a linear scale.)
qplot(HealthExpenditure, LifeExpectancy,

data=health, colour=Region, size=Population)

5

50

60

70

80

0 2000 4000 6000 8000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

Task 1.
In this task we will use the data set diamonds from ggplot2. Create a scatter plot of carat against price,using different colours to denote the different colour and different plotting symbols to denote the differentcuts.

6

Using the more general ggplot interface
A typical ggplot call

A plotting command for ggplot consists of a sequence of function calls added together using the standard sum oper-ator +:
ggplot(data=...) + # Specify data source

aes(...) + # Generic aesthetics applying to all layers
geom_<type>(aes(...), ...) + # Geometry for one layer with layers-specific aesthetics
geom_<type>(aes(...), ...) +
... # Further arguments for fine-tuning (themes, scales, facets, ...)

geom_<type> objects do not necessarily have to use the same data as specified in the call to ggplot. If the optionalargument data is specified, then the data source provided is used for this layer.
We can recreate the plot we have just drawn using ggplot instead of qplot.
ggplot(data=health) +

aes(x=HealthExpenditure, y=LifeExpectancy) +
geom_point(aes(colour=Region, size=Population)) +
scale_x_log10()

50

60

70

80

10 100 1000 10000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

Adding additional layers

Additional layers can simply be added to the plot. For example, we can add an overall regression line with confidencebands (you will learn more about regression lines in the Predictive Modelling course) using
ggplot(data=health) +

aes(x=HealthExpenditure, y=LifeExpectancy) +
geom_point(aes(colour=Region, size=Population)) +
geom_smooth(method="lm") +
scale_x_log10()

`geom_smooth()` using formula 'y ~ x'

7

50

60

70

80

10 100 1000 10000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

If we want to add a different regression line for each country we have to make sure that a group or colour aes-thetic is passed to geom_smooth. We could pass aes(colour=Region) to geom_smooth. Alternatively, we can move
colour=Region from the aesthetics specific to geom_point to the generic aesthetics, so that colour=Region nowapplies to both geom_point and geom_smooth.
ggplot(data=health) +

aes(x=HealthExpenditure, y=LifeExpectancy, colour=Region) +
geom_point(aes(size=Population)) +
geom_smooth(method="lm") +
scale_x_log10()

`geom_smooth()` using formula 'y ~ x'

Warning in qt((1 - level)/2, df): NaNs produced

Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf

8

50

60

70

80

10 100 1000 10000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

The warning comes from the fact that there are only two North American countries, so we can fit a line through themwith no error, which means we cannot draw confidence bands.
The plot looks slightly messy, we will use facet_wrap later on to split it into separate panels.
Suppose we want to annotate the observations belonging to Australia, the UK, the US.
health2 <- health %>%

filter(Country %in% c("Australia", "United Kingdom", "United States"))
ggplot(data=health) +

aes(x=HealthExpenditure, y=LifeExpectancy, colour=Region) +
geom_point(aes(size=Population)) +
geom_label(data=health2,

aes(x=HealthExpenditure, y=LifeExpectancy, label=Country),
show.legend=FALSE)

9

Australia
United Kingdom

United States

50

60

70

80

0 2000 4000 6000 8000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

The labels however cover the observations and might not be fully visible. This can be avoided by using the function
geom_label_repel from ggrepel.
health <- health %>%

mutate(CountryLabel=ifelse(Country%in%c("Australia", "United Kingdom", "United States"),
as.character(Country),""))

library(ggrepel)
ggplot(data=health) +

aes(x=HealthExpenditure, y=LifeExpectancy, colour=Region) +
geom_point(aes(size=Population)) +
geom_label_repel(aes(label=CountryLabel), show.legend=FALSE)

10

https://cran.r-project.org/web/packages/ggrepel

Australia

United Kingdom United States

50

60

70

80

0 2000 4000 6000 8000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

This time, we have used a different approach. Rather than subsetting the data and creating a separate data frame onlycontaining the data for the three countries, we have created a new column in the data frame health, which is blankexcept for the three countries. This is required because ggrepel layers are only aware of data drawn in their ownlayer: this way we can avoid the labels covering observations we have not labelled.
Explicit drawing

The standard R plotting functions draw a plot as soon as the plot function is invoked.
Plotting commands in ggplot2 (including qplot) return objects (otherwise the + notation would not work) and onlydraw the plot when their print or plot methods are invoked. In the console this is the case when they are usedwithout an assignment.
a <- ggplot(data=health) + # Does not draw anything

aes(x=HealthExpenditure, y=LifeExpectancy) +
geom_point()

b <- a + scale_x_log10() # Does not draw anything either

a # Now the plot stored in a gets drawn
print(a) # Draw a again (explicit invocation)

b # Now the plot stored in b gets drawn

Inside loops and functions the print or plot methods need to be invoked explicitly by using the methods print or
plot.

Task 2.
Just like in Week 5, consider two vectors x and y created using
n <- 1e3
x <- runif(n, 0, 2*pi) # x is random uniform from (0,2*pi)
x <- sort(x) # Sorting of x _not_ needed for ggplot
y <- sin(x) # Set y to the sine of x
y.noisy <- y + .25 * rnorm(n) # Create noisy version of y

11

Use ggplot2 to create a scatterplot of y.noisy against x, which also shows the noise-free sine curve in
y.

12

Modifying plots
Labels and titles

We can set the plot title using ggtitle(title) and the axis labels using xlab(label) and ylab(label).
ggplot(data=health) +

aes(x=HealthExpenditure, y=LifeExpectancy, colour=Region) +
geom_point(aes(size=Population)) +
geom_smooth(method="lm") +
scale_x_log10() +
ggtitle("Relationship between Health Expenditure and Life Expectancy") +
xlab("Health Expenditure") +
ylab("Life Expectancy")

`geom_smooth()` using formula 'y ~ x'

50

60

70

80

10 100 1000 10000
Health Expenditure

Li
fe

 E
xp

ec
ta

nc
y

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

Relationship between Health Expenditure and Life Expectancy

Changing the text shown in legends (like in our case the names of the regions) is more complicated. It is almost alwayseasier to simply change the levels of the categorical variable in the dataset itself before invoking ggplot2 commands.
Scales

Aesthetics control which variables are mapped to which property of the geometric object. However, aesthetics do notspecify how this mapping is performed. This is where scales come into play. Scales control how any value from thevariable is translated into a property of a geometric object: scales control for example how a variable is translated intocoordinates (say through a log transform) or into colours (say though a discrete colour palette).
ggplot2 automatically chooses (what it thinks is) a suitable scale. This is usually reasonable, but on occasions it mightbe necessary to override this.
There is a family of scale functions for each aesthetic. The template for the function name for scales is
scale_<aesthetic>_<type>.
Scales for continuous data We have already seen that we can log-transform the axes using scale_x_log10 and
scale_x_log10. The more general functions for coordinate transforms are scale_<x or y>_continous(...). Wecan. amongst others, set the axis label (argument name, the ticks and tickmarks (arguments breaks and labels) thelimits (argument limit) and the transform to be used (argument trans).

13

The axes might use scientific notation (e.g. “4e5”). If you want to avoid using scientific notation and use fixednotation, change the scipen option in R, which controls when scientific notation is used (for example run
options(scipen=1e3)).
There are functions for mapping continuous data to other aesthetics, too. For example, scale_colour_gradientconverts a continuous variable to a colour using a gradient of colours. The arguments low and high specify thecolours used at the two ends. scale_colour_gradient2 allows for also specifying amid-point colour (argument mid).
scale_colour_gradientn is themost general function it allows specifying a vector of colours and corresponding vec-tor of colours. The function scale_colour_distiller uses the colour brewer available at http://colorbrewer2.org/and allows for constructing colours scales which are photocopier-safe and/or work for colour-blind readers.
a <- ggplot(data=health) +

aes(x=HealthExpenditure, y=LifeExpectancy) +
geom_point(aes(colour=Population)) +
scale_colour_distiller(palette="YlOrRd" , trans="log")

a

50

60

70

80

0 2000 4000 6000 8000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

1202604

24154953

485165195

Population

Wehave used trans="log" to use the log-transformed values of the population sizes (due to its skewness). The valuesgiven in the legend seem slightly odd choices: this is due to the log-transform (they are roughly exp(14), exp(17) and
exp(20), so “nice” numbers on the log scale).
We have stored the plot in a variable a so that we can redraw it later on with different themes.
Scales for discrete data There are also various scaling functions for discrete data, such as scale_colour_brewer.
Note that there are separate scales for colour (outline colour – example: scale_colour_brewer) and fill (fill colour –example: scale_fill_brewer).
Statistics

Sometimes data has to be aggregated before it can be used in a plot. For example, when creating a bar plot illustratingthe distribution of a categorical variable we have to count how many observations there are in each category. This willthen determine the height of the bars. ggplot2 automatically chooses (what it thinks is) a suitable statistic.
For example, when we draw a bar plot using geom_bar, it uses by default the statistic count, which first produces atally. We don’t need to worry about this, ggplot2 does all the work for us.
ggplot(data=health) +

geom_bar(aes(x=Region)) +

14

colorbrewer.org

theme(axis.text.x = element_text(angle = 90, hjust = 1)) # Rotate x axis labels

0

10

20

30

40
E

as
t A

si
a

&
 P

ac
ifi

c

E
ur

op
e

&
 C

en
tr

al
 A

si
a

La
tin

 A
m

er
ic

a
&

 C
ar

ib
be

an

M
id

dl
e

E
as

t &
 N

or
th

 A
fr

ic
a

N
or

th
 A

m
er

ic
a

S
ou

th
 A

si
a

S
ub

−
S

ah
ar

an
 A

fr
ic

a

Region

co
un

t

Suppose we now want to a draw bar chart visualising the mean health expenditure in each region. Now we don’twant ggplot2 to produce a tally of how often which value occurs, we want it to simply draw the bars to the heightsspecified in the data. Because we now want no aggregation, we have to use the statistic identity.
library(dplyr)
HESummary <- health %>% # Get avg health exp

group_by(Region) %>%
summarise(HealthExpenditure=mean(HealthExpenditure))

ggplot(data=HESummary) +
geom_bar(aes(x=Region, y=HealthExpenditure), stat="identity") +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) # Rotate x axis labels

15

0

2000

4000

6000

E
as

t A
si

a
&

 P
ac

ifi
c

E
ur

op
e

&
 C

en
tr

al
 A

si
a

La
tin

 A
m

er
ic

a
&

 C
ar

ib
be

an

M
id

dl
e

E
as

t &
 N

or
th

 A
fr

ic
a

N
or

th
 A

m
er

ic
a

S
ou

th
 A

si
a

S
ub

−
S

ah
ar

an
 A

fr
ic

a

Region

H
ea

lth
E

xp
en

di
tu

re

Theming

Themes can be used to customise how ggplot2 graphics look like. We have already used theme to change how thehorizontal axis is typeset.
ggplot2 has several themes built-in. The default theme is theme_gray. Other themes available are theme_bw(monochrome), theme_light, theme_lindedraw and theme_minimal. Further themes are available in extensionpackages such ggthemes.
a + theme_minimal()

16

https://cran.r-project.org/web/packages/ggthemes

50

60

70

80

0 2000 4000 6000 8000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

1202604

24154953

485165195

Population

library(ggthemes)
a + theme_economist() + theme(legend.position="right")

50

60

70

80

0 2000 4000 6000 8000
HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

1202604

24154953

485165195
Population

Arranging plots (faceting)

The function facet_grid(rvar~cvar) creates separate plots based on the values rvar (rows) and cvar (columns)takes. The function facet_wrap(~var1+var2) arranges the plots in several rows and columns without rigidly asso-ciating one variable with rows and one with columns. Continuous variables need to be discretised (for example using
cut) before they can be used for defining facets.
ggplot(data=health) +

aes(x=HealthExpenditure, y=LifeExpectancy, colour=Region) +

17

geom_point(aes(size=Population)) +
geom_smooth(method="lm") +
scale_x_log10() +
facet_wrap(~Region)

`geom_smooth()` using formula 'y ~ x'

Warning in qt((1 - level)/2, df): NaNs produced

Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf

Sub−Saharan Africa

Middle East & North Africa North America South Asia

East Asia & Pacific Europe & Central Asia Latin America & Caribbean

10 100 1000 10000

10 100 1000 1000010 100 1000 10000

50

60

70

80

50

60

70

80

50

60

70

80

HealthExpenditure

Li
fe

E
xp

ec
ta

nc
y

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Region

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub−Saharan Africa

Arranging plots in more general ways (like in par(mfrow=c(...)) or layout) is not directly possible with ggplot2.The package gridExtra however provides a function grid.arrange, which allows for arranging ggplot2 plots side byside.
Classical plot customisation functions are not compatible with ggplot2

ggplot2 plots are not compatible with the functions used to customise or arrange basic R plots, such as par or layout.

18

https://cran.r-project.org/web/packages/gridExtra

Examples
In this section we return to some of the examples from last week and reproduce them in ggplot2.

Example 1 (The bivariate Gaussian density).

We start by creating a data frame with three columns, x, y and z, which holds the value of the bivariateGaussian density.
x <- seq(-2, 2, len=50)
y <- seq(-2, 2, len=50)
data <- expand.grid(x=x, y=y) %>%

mutate(z=dnorm(x)*dnorm(y))

In contrast to the classical plotting functions ggplot2 needs the input data in “long”, rather than “wide”format, so there is no need to call spread as we did last week.
ggplot(data=data) +

aes(x=x, y=y) +
geom_raster(aes(fill=z), interpolate=TRUE) +
geom_contour(aes(z=z)) +
coord_fixed() # Make sure plot uses equal scales,

−2

−1

0

1

2

−2 −1 0 1 2
x

y

0.04

0.08

0.12

z

so that circles are actually circles
and not ellipsoids

Example 2 (Fisher’s iris data).

In this example we look at again the sepal length and width from Fisher’s famous iris data.
species.means <- iris %>% # Get species means for centroid

group_by(Species) %>%
summarise_all(mean)

ggplot(data=iris) +
geom_point(aes(x=Sepal.Length, y=Sepal.Width, colour=Species)) +
geom_point(data=species.means,

aes(x=Sepal.Length, y=Sepal.Width, colour=Species), size=3, shape=4)

19

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

setosa

versicolor

virginica

In this example we could also use the function stat_ellipse, which draws confidence ellipsoids arounddata.
ggplot(data=iris) +

aes(x=Sepal.Length, y=Sepal.Width, colour=Species) +
geom_point() +
stat_ellipse()

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

setosa

versicolor

virginica

Example 3 (House prices in the UK).

In this example we will use the house price data from last week.
The data is in “wide” format. To be able to use the data in ggplot we first need to translate it into “long”format using the function gather from tidyr.

20

library(tidyr)
hp <- hp %>% gather(Region, Price, -Year)
ggplot(data=hp) +

geom_line(aes(x=Year, y=Price, colour=Region))

1e+05

2e+05

3e+05

4e+05

1995 2000 2005 2010 2015
Year

P
ric

e

Region

East

East Midlands

London

North East

North West

South East

South West

Wales

West Midlands

Yorkshire and The Humber

We could have also used qplot in this case.
qplot(Year, Price, data=hp, geom="line",colour=Region)

Example 4 (Diamonds data (revisited)).

There are a large number of observations in the diamond data from task 1, making the plot difficult toread as we cannot see how many observations were plotted on top of each other. It might be better toplot the density of the data, rather than individual observations.
ggplot(data=diamonds) +

aes(x=carat, y=price) +
stat_density_2d(geom = "raster", aes(fill = ..density..), contour = FALSE) +
scale_fill_distiller(palette="PuBuGn", direction=1, trans="sqrt") +
facet_wrap(~color)

21

J

G H I

D E F

0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0

5000

10000

15000

0

5000

10000

15000

0

5000

10000

15000

carat

pr
ic

e

0.0000

0.0004

0.0008
0.0012
0.0016

density

22

Review exercises
For the tasks in this section you need to load a data file t3.RData, which you can download from

• https://github.com/UofGAnalyticsData/R/raw/main/Week%206/t3.RData
If you run R on a computer connected to the internet, you can simply run
load(url("https://github.com/UofGAnalyticsData/R/raw/main/Week%206/t3.RData"))

Task 3.
This task is identical to the review task from Week 5, but this time we will be using ggplot2.The package MASS contains a data frame called hills, which wewill use in this task. It contains the recordtimes (in 1984) for 35 Scottish hill races. It has three columns, of which we will only use the followingtwo:

Column name Description
dist Distance of the race (in miles)
time Record time (in minutes)

(a) Create a scatter plot of time against dist. Label the x-axis “Distance (miles)”, and the y-axis “Time(min)”. Use “Hill Races in Scotland” as title of your plot.(b) A linear regression model (without intercept term) fitted to this data gives the following estimatedregression equation: �time𝑖 = 7.908 · dist𝑖
Add the regression line to the plot.(c) A 95% confidence interval for the expected (average) time given dist is

(7.1728 · dist, 8.6437 · dist)

Shade the confidence interval in colour.
Hint: Use the function geom_ribbon.(d) A 95% prediction interval for time given dist is

(7.908 · dist − 0.7355 ·
√︁

3021.25 + dist2, 7.908 · dist + 0.7355 ·
√︁

3021.25 + dist2)

Draw the upper and lower bound of the prediction interval in as dashed lines.Your final plot should look similar to the plots shown below.

0

100

200

10 20
Distance (miles)

H
ill

 R
ac

es
 in

 S
co

tla
nd

Hill Races in Scotland

23

https://github.com/UofGAnalyticsData/R/raw/main/Week%206/t3.RData

Task 4.
The file t3.RData contains two tibbles, stations and trips, which we will use in this task. stationscontains the list of bike stations of the Bay Area Bike Share system in the San Francisco Bay Area. It hasthe following columns.

Column name Description
station_id Numeric identifier of the station
name Name of the station
lat Latitude of the station
long Longitude of the station
dockcount Number of docks at the station
city City in which the station is located

The tibble trips contains all trips made during August 2015. It has the following columns.
Column name Description
trip_id Numeric identifier of the trip
trip_duration Duration of the trip in seconds
day Day of the month the trip was started
hour Decimal hour when the strip was started
start_station_id Numeric identifier of the station where the trip started
end_station_id Numeric identifier of the station where the trip ended
bike_id Numeric identifier of the bike used
end_date Date and time the trip ended
subscriber_type User type (“Subscriber” or “Customer”)

(a) Create a bar plot showing the number of stations in each city.

0

10

20

30

Mountain View Palo Alto Redwood City San Francisco San Jose
city

co
un

t

(b) Create a plot of the density of the time (decimal hour) of when trips are started. Use colour todistinguish between the different cities the trip is started in and create one panel for week daysand one for week ends. Saturdays and Sundays in August 2015 were August 1st, 2nd, 8th, 9th,15th, 16th, 22nd, 23rd, 29th, 30th.

24

FALSE TRUE

0 5 10 15 20 25 0 5 10 15 20 25

0.0

0.1

0.2

0.3

hour

de
ns

ity

city

Mountain View

Palo Alto

Redwood City

San Francisco

San Jose

(c) Create a plot of the locations of the bike stations. Use colour to indicate the city they are locatedin. When using ggplot2 use the size of the plotting symbol to indicate the number of docks. Thelabel of the x-axis should be “Longitude” and the label of the y-axis should be “Latitude”. The titleof the plot should be “Bicycle stations in the San Francisco Bay Area”.

37.4

37.5

37.6

37.7

37.8

−122.4 −122.2 −122.0
Longitude

La
tit

ud
e

city

Mountain View

Palo Alto

Redwood City

San Francisco

San Jose

Bicycle stations in the San Francisco Bay Area

(d) Add labels corresponding to each city. You can obtain the location of each city by averaging thecoordinates of the bike stations in that city.

Mountain View
Palo Alto

Redwood City

San Francisco

San Jose

37.4

37.5

37.6

37.7

37.8

−122.4 −122.2 −122.0
Longitude

La
tit

ud
e

Bicycle stations in the San Francisco Bay Area

25

(e) (harder) For trips within the city of San Francisco create a so-called origin-destination matrix. The
(𝑖, 𝑗)-th entry should contain the number of trips made from station 𝑖 to station 𝑗 . You can storethe origin-destination matrix either in wide matrix format or in long “tidy” format.

(f) Add lines to your plot representing the number of trips between the stations. Use the line thicknessor transparency to indicate the number of trips.

37.77

37.78

37.79

37.80

−122.42 −122.41 −122.40 −122.39
long

la
t

dockcount

15

18

21

24

27

ntrips

200

400

600

26

Bonus material: Maps in R
Producing maps using ggmap

The R package ggmap can download maps from Google maps (or OpenStreetMap) which can then be used as a back-ground layer in a ggplot2 plot.
The function get_map(location, zoom) downloads a map. location can be a pair of longitude and latitude, acharacter string describing the location, or a bounding box. zoom controls the zoom level (from 3 (continent) to 21(highest resolution)). The optional argument maptype can be used to select the type of map downloaded (for example
"roadmap", "hybrid" or "satellite" when using Google maps)
Note that access to the Google API (for Google map tiles and for geolocation (translation of location description to GPScoordinates) requires a Google API key. When using a bounding box and "stamen" as source, no API key is required.
library(ggmap)
boundingbox <- c(left = -4.30, bottom = 55.865, right = -4.28, top = 55.875)
map <- get_map(boundingbox, zoom=16, source="stamen")

The map can the be plotted using ggmap(map). Layers can be added to the map using the usual ggplot2 commands.
ggmap(map) +

geom_label(x=-4.289, y=55.873, label="The University of Glasgow")

The University of GlasgowThe University of GlasgowThe University of GlasgowThe University of Glasgow

55.8650

55.8675

55.8700

55.8725

55.8750

−4.300 −4.295 −4.290 −4.285 −4.280
lon

la
t

Task 5.
Amend your commands from task 4 to show a map of San Francisco in the background of the plots fromparts (d) and (f).
You can use the following bounding box for part (d)
boundingbox <- c(left = -122.5, bottom = 37.25, right = -121.75, top = 38)

and the following bounding box for part (f)
boundingbox <- c(left = -122.43, bottom = 37.76, right = -122.38, top = 37.81)

Producing maps using leaflet

Maps plotted using ggmap cannot be panned and zoomed in and out like maps on Google Maps or OpenStreetMap.The package leaflet allows for this. It works somewhat the other way round than ggmap: rather than downloading

27

Figure 1: Leaflet map showing the University of Glasgow

the map and integrating it into an R plot it overlays the data over the map interface.
The following command puts a marker where the University of Glasgow is located.
library(leaflet)
leaflet() %>%

addTiles(urlTemplate = "http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png") %>%
addMarkers(lng=-4.2885, lat=55.8715, popup="The University of Glasgow")

The argument urlTemplate is only required when opening the file locally.

Task 6.
Add the locations of the bike stations in San Francisco from task 4 to a map created using leaflet.

Lines can be added to the map using the function addPolylines.
The data frame subway contains the GPS coordinates of all subway stations in Glasgow and is contained in t3.RData.You can produce a map of the Glasgow subway network using the following code.
subway2 <- rbind(subway, subway[1,]) # Make sure line goes back to Hillhead
leaflet() %>%

addTiles(urlTemplate = "http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png") %>%
addMarkers(lng=-4.2885, lat=55.8715, popup="The University of Glasgow") %>%
addPolylines(subway2$long, subway2$lat, color="#ff6200", opacity=0.5, weight=10) %>%
addCircleMarkers(subway$long, subway$lat, popup=subway$station, color="#ff6200",

opacity=1, fillColor="#4d4f53", fillOpacity=1)

28

Figure 2: Leaflet map showing the Glasgow Subway

Task 7.
Add lines indicating the number of trips to your leaflet map of San Francisco.
Hint: It is easiest if you add the lines one-by-one using a loop.

29

Answers to tasks
Answer to Task 1. We can use the following R code.
qplot(carat, price, data=diamonds, colour=color, shape=cut)

Warning: Using shapes for an ordinal variable is not advised

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

color

D

E

F

G

H

I

J

cut

Fair

Good

Very Good

Premium

Ideal

Answer to Task 2. We can use the following R code:
ggplot() + # No need to use data=... as x, y and y.noisy

are variables in the workspace and not columns
in a dataset

geom_point(aes(x, y.noisy)) +
geom_line(aes(x, y))

30

−1

0

1

0 2 4 6
x

y.
no

is
y

It does not matter whether geom_point or geom_line comes first. ggplot2 adapts the axes so that all objects drawnfit (and not just the first one as is the case when using standard R plotting functions plot and points).
Answer to Task 3.

Video model answers

https://youtu.be/7d4DNjehhB4
Duration: 12m07s

We can use the following R code.
library(MASS)

##
Attaching package: 'MASS'

The following object is masked from 'package:dplyr':
##
select

ggplot(data=hills) + # Set data source
aes(x=dist, y=time) + # Set global aesthetics
geom_ribbon(aes(ymin=7.1728*dist, ymax=8.6437*dist), fill="lightgrey") +

add confidence bands
geom_point() + # draw points
geom_line(aes(y=7.908*dist), size=1) + # draw regression line
geom_line(aes(y=7.908 * dist - 0.7355 * sqrt(3021.25 + distˆ2)),

linetype=2) +
geom_line(aes(y=7.908 * dist + 0.7355 * sqrt(3021.25 + distˆ2)),

31

https://youtu.be/7d4DNjehhB4

linetype=2) + # draw prediction bands
xlab("Distance (miles)") + ylab("Time (min)") +
ggtitle("Hill Races in Scotland") # set labels and titles

0

100

200

10 20
Distance (miles)

T
im

e
(m

in
)

Hill Races in Scotland

It would in general be better if we drew the prediction bands using a regular grid, so that the nonlinear bands don’tlook piece-wise linear. Note that the lines don’t go back and forth when using ggplot2 as they would do if used theclassical plotting functions. geom_line sorts the data by the x values first.
In this example we get away with just using the hills data, as the prediction bands are almost linear. Below we createequally spaced data for the prediction bands.
hills0 <- data.frame(dist=seq(from=min(hills$dist),

to=max(hills$dist), length.out=250))
Create regularly spaced data

ggplot(data=hills) + # Set data source
aes(x=dist, y=time) + # Set global aesthetics
geom_ribbon(aes(ymin=7.1728*dist, ymax=8.6437*dist), fill="lightgrey") +

add confidence bands
geom_point() + # draw points
geom_line(aes(y=7.908*dist), size=1) + # draw regression line
geom_line(aes(y=7.908 * dist - 0.7355 * sqrt(3021.25 + distˆ2)),

linetype=2, data=hills0) +
geom_line(aes(y=7.908 * dist + 0.7355 * sqrt(3021.25 + distˆ2)),

linetype=2, data=hills0) + # draw prediction bands
xlab("Distance (miles)") + ylab("Time (min)") +
ggtitle("Hill Races in Scotland") # set labels and titles

32

0

100

200

10 20
Distance (miles)

T
im

e
(m

in
)

Hill Races in Scotland

This is not a task at which ggplot2 can shine. However, if you do not insist that the regression line goes through theorigin, ggplot2 makes creating the plot much easier (you don’t even have to compute any coefficients and confidenceintervals).
ggplot(data=hills) +

aes(x=dist, y=time) +
geom_point() +
geom_smooth(method="lm")

`geom_smooth()` using formula 'y ~ x'

33

0

100

200

10 20
dist

tim
e

This is a lot less code than either of the above.
Answer to Task 4.

Video model answers

https://youtu.be/nHbjIkMR4xQ
Duration: 28m22s

(a) We can create the bar plot using the code
ggplot(data=stations) +

geom_bar(aes(x=city, fill=city), show.legend=FALSE)

34

https://youtu.be/nHbjIkMR4xQ

0

10

20

30

Mountain View Palo Alto Redwood City San Francisco San Jose
city

co
un

t

(b) The density of trips over time has to be inferred from the tibble trips. To get the city of departure we need tolook up the city from stations. We also need to create a variable indicating whether a day is on a weekend ornot.
trips_data <- trips%>%

inner_join(stations, by=c("start_station_id"="station_id"))%>%
mutate(weekend=day%in%c(1,2,8,9,15,16,22,23,29,30))

ggplot(data=trips_data)+
geom_density(aes(x=hour, colour=city)) +
facet_wrap(~weekend)

35

FALSE TRUE

0 5 10 15 20 25 0 5 10 15 20 25

0.0

0.1

0.2

0.3

hour

de
ns

ity

city

Mountain View

Palo Alto

Redwood City

San Francisco

San Jose

(c) We cam create the plot using
ggplot(data=stations) +

geom_point(aes(x=long, y=lat, colour=city)) +
xlab("Longitude") + ylab("Latitude") +
ggtitle("Bicycle stations in the San Francisco Bay Area")

37.4

37.5

37.6

37.7

37.8

−122.4 −122.2 −122.0
Longitude

La
tit

ud
e

city

Mountain View

Palo Alto

Redwood City

San Francisco

San Jose

Bicycle stations in the San Francisco Bay Area

(d) We first need to get the location of each city. I have used geom_label_repel to make sure the labels are fullyvisible. I have also made them slightly transparent alpha=0.5). The plotting command is the same as the onefrom the previous task, except for the additional geom_label_repel.
cities <- stations %>%

36

group_by(city) %>%
summarise(lat=mean(lat), long=mean(long))

library(ggrepel)
ggplot(data=stations) +

geom_point(aes(x=long, y=lat, colour=city), show.legend=FALSE)+
geom_label_repel(data=cities, aes(x=long, y=lat, colour=city, label=city),

show.legend=FALSE, alpha=0.5)+
xlab("Longitude") + ylab("Latitude") +
ggtitle("Bicycle stations in the San Francisco Bay Area")

Mountain View
Palo Alto

Redwood City

San Francisco

San Jose

37.4

37.5

37.6

37.7

37.8

−122.4 −122.2 −122.0
Longitude

La
tit

ud
e

Bicycle stations in the San Francisco Bay Area

(e) We start by subsetting the stations data and only keeping the stations from San Francisco.
sf_stations <- stations %>%

filter(city=="San Francisco")

We can create the required origin destination matrix by first subsetting the trip data to ensure that all trips start andend in San Francisco. Then we need to group by the start and end station and count the number of records percombination.
od <- trips %>%

filter(start_station_id%in%sf_stations$station_id,
end_station_id%in%sf_stations$station_id) %>%

group_by(start_station_id, end_station_id) %>%
summarise(ntrips=n())

We can convert the matrix from long format to wide matrix format using spread from tidyr.
odm <- od %>%

spread(end_station_id, ntrips, fill=0)

(f) In order to draw lines from the origin to the destination we need to add the GPS coordinates to the od data.We need to to this twice: once for the GPS coordinates of the origin and once for the GPS coordinates of thedestination.
odall <- od %>%

inner_join(sf_stations, by=c("start_station_id"="station_id")) %>%
inner_join(sf_stations, by=c("end_station_id"="station_id"),

suffix=c("","_end"))

37

Now we can create the plot.
ggplot() +

geom_point(data=sf_stations, aes(long, lat, size=dockcount)) +
geom_segment(data=odall, aes(long, lat, xend=long_end,

yend=lat_end, alpha=ntrips))

37.77

37.78

37.79

37.80

−122.42 −122.41 −122.40 −122.39
long

la
t

dockcount

15

18

21

24

27

ntrips

100

200

300

We have made a small mistake when creating the plot. We have drawn two lines between each point of stations: oncefor trips from A to B and once from B to A, but both lines are exactly on top of each other. Essentially the problemis that the origin-destination matrix is “directed’ ’: we account for trips from A to B and from B to A separately. Thevisualisation we have chosen is not directed: it is simply a line between A and B.
It would be better if we added up the number of trips from A to B and B to A and then only draw a single line betweenA and B.
We can do this by joining od to itself, but with the roles or start and end swapped. We can then add up the trips inboth directions and we need to only keep records for one direction (as the other direction now has exactly the sametotal number of trips): we do this by requiring the start index is less than the end index (Trips that originate and end inthe same station are in any case not visible in this plot).
od2 <- od %>%

full_join(od, by=c("start_station_id"="end_station_id", "end_station_id"=
"start_station_id")) %>%

replace_na(list(ntrips.x=0, ntrips.y=0)) %>%
mutate(ntrips=ntrips.x+ntrips.y) %>%
select(-ntrips.x, -ntrips.y) %>%
filter(start_station_id<end_station_id)

We need to use replace_na because for some pairs of stations, we have observed trips from A to B, but not from Bto A (or vice versa). This is also why I have used a full join: In a full join rows that do not have a match in the joineddata set are kept with the columns from the other data set set to NA.
We can now proceed in the same way as before.We just need to use od2 instead of od.
odall <- od2 %>%

inner_join(sf_stations, by=c("start_station_id"="station_id")) %>%
inner_join(sf_stations, by=c("end_station_id"="station_id"),

suffix=c("","_end"))

ggplot() +

38

geom_point(data=sf_stations, aes(long, lat, size=dockcount)) +
geom_segment(data=odall, aes(long, lat, xend=long_end,

yend=lat_end, alpha=ntrips))

37.77

37.78

37.79

37.80

−122.42 −122.41 −122.40 −122.39
long

la
t

dockcount

15

18

21

24

27

ntrips

200

400

600

Answer to Task 5. For part (d) we can use the following code.
boundingbox <- c(left = -122.5, bottom = 37.25, right = -121.75, top = 38)

map <- get_map(boundingbox, zoom=9, source="stamen")

ggmap(map) +
geom_point(data=stations, aes(x=long, y=lat, colour=city)) +
xlab("Longitude") + ylab("Latitude") +
ggtitle("Bicycle stations in the San Francisco Bay Area")

39

37.4

37.6

37.8

38.0

−122.5 −122.3 −122.1 −121.9
Longitude

La
tit

ud
e

city

Mountain View

Palo Alto

Redwood City

San Francisco

San Jose

Bicycle stations in the San Francisco Bay Area

For part (f) we can use the following code.
boundingbox <- c(left = -122.43, bottom = 37.76, right = -122.38, top = 37.81)
map <- get_map(boundingbox, zoom=13, source="stamen")

ggmap(map) +
geom_point(data=sf_stations, aes(long, lat, size=dockcount), col="orange") +
geom_segment(data=odall, aes(long, lat, xend=long_end, yend=lat_end, alpha=ntrips), col="orange")+
xlab("Longitude") + ylab("Latitude") +
ggtitle("Bicycle trips in San Francisco")

40

37.76

37.77

37.78

37.79

37.80

37.81

−122.43 −122.42 −122.41 −122.40 −122.39 −122.38
Longitude

La
tit

ud
e

dockcount

15

18

21

24

27

ntrips

200

400

600

Bicycle trips in San Francisco

Answer to Task 6. We can use the following R code.
library(leaflet)
m <- leaflet() %>%

addTiles(urlTemplate = "http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png") %>%
m

Answer to Task 7. We can use the following R code.
library(leaflet)
m <- leaflet() %>%

addTiles(urlTemplate = "http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png") %>%
addMarkers(sf_stations$long, sf_stations$lat, popup=sf_stations$name)

max.ntrips <- max(odall$ntrips)

for (i in 1:nrow(odall))
m <- m %>%

addPolylines(unlist(odall[i,c("long","long_end")]),
unlist(odall[i,c("lat","lat_end")]),
opacity=odall$ntrips[i]/max.ntrips)

41

	Overview
	ggplot terms

	Quick plots
	Using the more general ggplot interface
	A typical ggplot call
	Adding additional layers
	Explicit drawing

	Modifying plots
	Labels and titles
	Scales
	Statistics
	Theming
	Arranging plots (faceting)
	Classical plot customisation functions are not compatible with ggplot2

	Examples
	Review exercises
	Bonus material: Maps in R
	Producing maps using ggmap
	Producing maps using leaflet

	Answers to tasks

