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Inference

UABC - Inference

https://youtu.be/O4oZW2VlSEY
Duration: 34m16s

In the previous part we covered that in the Bayesian framework we use probability to quantify belief. Here we will
discuss how beliefs are updatedwhen observing new evidence.
Our beliefs change as we observe new evidence. This is the essence of the process of learning. Formally, the process of
learning is described by the concept of Inference— updating probability distributions corresponding to our beliefs in
light of new data.
Consider the problem of establishing the age of planet Earth. Mere 300 years ago themajority of people believed that
Earth is about 6000 years old. In themiddle of the 18th century geologists considered strata, the layering of rocks and
earth, that suggested that Earth has likely gone through several periods of development andmust bemuch older than
previously assumed. In 1779 the Comte du Buffon tried to obtain a value for the age of Earth using an experiment: He
created a small globe that resembled Earth in composition and thenmeasured its rate of cooling. This led him to estimate
that Earth was about 75,000 years old. In 1862, the prominent physicist William Thomson, 1st Baron Kelvin, and a
professor at the University of Glasgow, published calculations that suggested the age of Earth at between 20million and
400million years. His calculations assumed that Earth started off as amolten ball and similarly relied on some cooling
down calculations. Few people in the general public accepted these arguments. While critics in the scientific world were
doubting these results in both directions— some considering a hypothesis of a younger Earth, while others suggesting
an older one. In 1895, John Perry produced an age-of-Earth estimate of 2 to 3 billion years using amodel of a convective
mantle and thin crust. Discovery of radioactivity invalidated all previous estimates based on the rates of cooling down,
as heat produced via radioactive decay can replenish the energy lost through cooling down. Radioactivity, which had
overthrown the old calculations, yielded a bonus by providing a basis for new calculations, in the form of radiometric
dating. Current belief is that Earth and the rest of the Solar System formed at around 4.53 to 4.58 billion years ago. This
belief is also accepted by themajority of the general public.
This story emphasises an important requirement for any framework of working with beliefs - it must allow changing the
belief in the light of new evidence. Bayesian Statistics achieves this by operating upon conditional distributions.
First of all, our scientific hypotheses are expressed with parametric statistical models. Thesemodels impose likelihoods
of a form p(D |θ) where D is data that can be observed, while θ is the parameter of themodel that answers the question
of interest. The likelihood defines the probability of observing the data Dwhenmodel parameters are fixed at certain
values.
We describe our initial belief (before observing any data) with a distribution of model parameters called the prior
distribution p(θ).
After observing a particular data set D (our evidence), wewill update our belief about θ to the posterior distribution
p(θ |D).
This update is performed using Bayes’ theorem:

p(θ |D) =
p(D |θ)p(θ)

p(D)
=

p(D |θ)p(θ)∫
p(D |θ)p(θ)dθ

Themost difficult part is evaluating the integral in the denominator. Only in simplest cases this integral can be evaluated
directly. Consider the first example, where such evaluation in performed analytically.

Example 1 (Tossing a Coin).
Webegin with the simplest example of performing statistical inference. Imagine, wewant to establish the
probability of tossing heads with some given coin. We do not know if the coin is fair, and therefore we
cannot assume any preference for this probability.
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Webeginwith establishing amodel for our planned experiments. Wewill be tossing the coin repeatedly, and
observing what proportion of the tosses results in heads. This is a classical example for the binomial model.
The binomial distribution is parametrisedwith the probability of success θ, in our case it is the probability of
tossing heads. The number of successes in n independent tosses is measured using the following probability
mass function:

p(D |θ) =
(
n
k

)
θk (1 − θ)n−k,

where D = (k, n) is the data that corresponds to observing k heads among n consecutive tosses.

Next, we define the prior distribution of θ that de-
scribes our belief in plausible values of θ before we
perform any tosses. We know that θ is the probability
of tossing heads, and thereforemust be between zero
and one. As we don’t know if the coin is fair or not,
we cannot prefer a particular value of θ to any other
value. Therefore wewill be using a uniform distribu-
tion from zero to one to express our initial belief in
possible values of θ. This distribution is depicted in
Figure 1.
Nowwe can toss the coin once, and observe the result.
Assume this is a head. Our dataset in this case is D =
(1, 1)—one success in one trial.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

θ

p(
θ)

Figure 1: The prior distribution for θ.

We can now calculate the posterior probability of θ:

p(θ |D) =
p(D |θ)p(θ)

p(D)
=

p(D |θ)p(θ)∫
p(D |θ)p(θ)dθ

As our k = 1, n = 1, then ∫
p(D |θ)p(θ)dθ =

∫ 1

0
θdθ =

1
2,

and the posterior probability density function will be:

p(θ |D) =



1 · θ1 · (1 − θ)0 · 1
1
2

, 0 ≤ θ ≤ 1

0, otherwise
=



2θ, 0 ≤ θ ≤ 1
0, otherwise

This posterior probability density is depicted in Figure 2. Note the difference between Figures 1 and 2—
we went from believing that any value of θ has the same probability to believing that larger θ are more
probable than the smaller ones, with themost likely value being 1. We still preserve some possibility for θ
to be less than 1, because observing one toss of a coin provides only limited amount of information about
the problem. Compare this result to themaximum likelihood estimation performed in classical statistics,
where the conclusion would have beenmade that θ = 1with no other options, and any further data would
have to completely invalidate this conclusion.
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Figure 2: The posterior distribution p(θ |D) when
D = (1, 1) corresponding to one head in
one toss.
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Figure 3: The posterior distribution p(θ |D) when
D = (7, 10) corresponding to seven
heads in ten tosses.

Now, consider a casewherewe tossed the coin ten times, and observed seven heads. In this caseD = (7, 10).
First, we need the integral:∫

p(D |θ)p(θ)dθ =
∫ 1

0

n!
k!(n − k)! θ

k (1 − θ)n−kdθ = 120
∫ 1

0
θ7(1 − θ)3dθ =

1
11 .

Now, the posterior density is going to be:

p(θ |D) =



120·θ7 ·(1−θ)3 ·1
1

11
, for 0 ≤ θ ≤ 1

0, otherwise =



1320 θ7(1 − θ)3, for 0 ≤ θ ≤ 1
0, otherwise

which is plotted in Figure 3.
We can continue the experiments. In this case, the
information about θ that we learned in the first ex-
periment, and that is expressed as the distribution in
Figure 3, will be the prior for the next experiment.
Assume, we toss the coin 10more times, and observe
6more heads, so the second data set is D2 = (6, 10).
We can now calculate the posterior for both of the
data sets:

P(θ |D, D2) =
p(D2 |θ)p(θ |D)∫
p(D2 |θ)p(θ |D)dθ

Note, that p(θ |D) from Figure 3 is now used as a prior
in this new calculation.
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Figure 4: The posterior distribution p(θ |D, D2)
when D = (7, 10) and D2 = (6, 10).

So, the integral in the denominator becomes:∫
p(D2 |θ)p(θ |D)dθ = 277200

∫ 1

0
θ13(1 − θ)7dθ = 277200 B(14, 8) =

277200 · 13! · 7!
21! =

55
323

Where B(α, β) is thebeta functionwhich is bydefinition the solution to that integral. The resulting posterior
after observing both data sets:

P(θ |D, D2) =



210·θ6 ·(1−θ)4 ·1320·θ7 ·(1−θ)3
55

323
, for 0 ≤ θ ≤ 1

o, otherwise =



1627920 θ13(1 − θ)7, for 0 ≤ θ ≤ 1
0, otherwise

which is now plotted in Figure 4.

Notice, that the difficult integral in the denominator always resolves to be a real number, as it acts as a scaling constant
tomake the posterior a proper distribution, i.e. ensuring that∫

p(θ |D)dθ = 1.
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In low dimensional problems, when we are performing inference over one or two parameters, we can get away with
evaluating the unscaled posterior density (the numerator only) over a fine grid over model parameters, and then re-
normalising the resulting distribution to integrate to 1. This “trick” is demonstrated in our second example.

Example 2 (Weight of a Cat).
Imagine that we are trying to establish how heavy adult domestic cats are on average.
First, we need to formulate a hypothesis about possible observations of cat weights.
A cat’s weight depends on the breed of the cat, on the cat’s diet, on the cat’s age, some genetic traits, and
so on. It is fair to assume that there is a very large number of possible factors that impact the cat’s weight.
By the virtue of the central limit theorem, we can therefore assume that the observations for the weight
of adult cats will be normally distributed. Let D be the weight of a randomly selected cat, µwill be the
average weight of an adult cat (that we are most interested to find), and σ2 will be the variance of the
normal distribution used in ourmodel. In this case the likelihood for our model is going to be

p(D |µ, σ2) = ND (µ, σ2) =
1

√
2πσ2

exp
{
−

(D − µ)2

2σ2

}
This function defines the probability of observing D under the assumption of certain µ andσ2.
Next, we need to define the prior for µ andσ2 to reflect our knowledge about these before weighting any
cats. We can be certain, that the average weight of a cat µ is strictly positive. Similarly, we can be quite sure
that on average domestic cats are not bigger than elephants or even humans, so we can safely assume some
upper limit on theweight of a cat. A quick google search shows that the heaviest cat on recordweighted
about 47 lb. So, 50 lb is safely greater than the weight of any cat we can observe. Finally, let’s assume that
we do not prefer any value within the proposed range and therefore wewill use the uniform distribution
from 0 lb to 50 lb as the prior for parameter µ. Parameterσ2 is the variance for the normal population of
cat weights. σ2 is again strictly positive, and 99.7% of the observations from a normal distribution will be
within 6 standard deviations σ of this distribution. So, we can put a limit on σ to be 50/6 = 8.33 lb, and
therefore the upper limit forσ2 will be 69.4. As we have no reasons to justify any dependency between µ
andσ2 before observing experimental data, wewill keep these priors independent:

p(µ, σ2) = p(µ)p(σ2) =



1
50 ×

1
69.4, 0 < µ < 50, 0 < σ2 < 69.4

0, otherwise

=




1
3470, 0 < µ < 50, 0 < σ2 < 69.4

0, otherwise
We plot the heatmap for this prior distribution p(µ, σ2) in Figure 5.

0 10 20 30 40 50

0
20

40
60

µ

σ2

Figure 5: The prior distribution p(µ, σ2).
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Figure 6: The posterior distribution p(µ, σ2 |D) af-
ter observing D = 7.
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Nowwe proceed to collecting data. Imagine, wemeasured a cat with weight of 7 lb, therefore we fix D = 7.
We can calculate the posterior probability of µ andσ2 as the following:

p(µ, σ2 |D) =
p(D |µ, σ2)p(µ, σ2)

p(D)
=

p(D |µ, σ2)p(µ, σ2)!
p(D |µ, σ2)p(µ, σ2)dµdσ2

This is the distribution of the belief for plausible values of µ andσ2 after observing data D. This posterior
distribution density was evaluated on a fine grid, and plotted in Figure 6. This is done using the following R
code:
mugrid <- seq(-1,51,0.1)
sigma2grid <- seq (-5, 74.4, 0.1)

these two lines created a grid over µ andσ2 with a step of 0.1. The following line creates an emptymatrix
to evaluate unscaled posterior density at every combination of µ andσ2 on the grid.
posterior <- matrix(0,nrow=length(mugrid),ncol=length(sigma2grid))

Now, wewill go through every element of this matrix, and evaluate the numerator of the posterior for that
point on the grid using the following double loop in R:
for (i in 1:nrow(posterior)) {

for (j in 1:ncol(posterior)) {
if ((mugrid[i] > 0) & (mugrid[i] < 50) &

(sigma2grid[j] > 0) & (sigma2grid[j] < 69.4)) {
posterior[i,j] <- 1/3470*dnorm(7,mugrid[i],sqrt(sigma2grid[j]))

}
}

}

The points on the grid where the prior had probability zero will stay zero in the posterior. Nowwe need to
ensure that the posterior integrates to 1. As the step on the grid was 0.1 in both dimensions, we need to
make sure that the elements of the resulting matrix add up to 100 (as the integral over the whole grid must
be 1, and 100 · 0.1 · 0.1 = 1). This can be done the following way:
posterior <- posterior/sum(posterior) * 100

Final matrix posterior can now be plotted to produce the result in Figure 6 using
require(RColorBrewer)
image(mugrid,sigma2grid,posterior,useRaster=T,

col=c("#FFFFFF",colorRampPalette(brewer.pal(9, "Reds"))(250)))
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Weobserve in Figure 6 that the posterior distribution
is significantly different from the prior in Figure 5; it
is now concentrated around µ = 7. As we are not
interested in working out the variance of the sam-
pling distribution, and focus on finding the average
weight of an adult domestic cat, we should look at the
marginal posterior distribution of µ alone: p(µ|D),
whereσ2 has been integrated out. This distribution is
shownwith a solid line in Figure 7. This can be easily
obtainedwith
mumarginal <- rowSums(posterior)*0.1
plot(mugrid,mumarginal,type="l")

These lines perform simple numerical integration by
computing the corresponding Riemann sums on the
grid forσ2.
Comparing this posterior to the prior for µ, as de-
picted with the dashed line in Figure 7, we observe
that our belief in the likely values for the average
weight of a cat changes significantly as we observe
experimental data. The divergence between the prior
and the posterior corresponds to the amount of infor-
mation learned from the data.
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Figure 7: Solid line is the marginal posterior distri-
bution p(µ|D) after observing D = 7
and integrating out σ2. The dashed line
is our prior p(µ).

Other approaches to calculating the integral in thedenominatorof theposterior expression includenumerical integration,
Monte-Carlo integration, sampling usingMarkov Chains that avoid calculating the integral altogether, or using a special
form of the prior that simplifies the expression. Wewill consider most of these approaches later in the course.

Prediction

UABC - Prediction

https://youtu.be/ZqQLbOZY8EA
Duration: 19m39s

Nowwe know how to learn from data by performing Bayesian inference and updating our prior beliefs to the poste-
rior beliefs. A natural next step in statistical analysis is to be able to predict future observations given our current
understanding of themodel.
For example, if you created a novel statistical model of the stockmarket, themost useful application of this model will be
to predict how themarket will perform in the future, as these predictions will help guiding trading decisions.
Even before we observe any data, we can start predicting experiment outcomes using the information in our prior. To do
that we need to evaluate the probability of the future observation ỹ given that themodel parameters are coming from
the prior:

p( ỹ) =
∫

p( ỹ, θ)dθ =
∫

p( ỹ |θ)p(θ)dθ

p( ỹ) is called the prior predictive distribution.
Consider an example of predicting a coin toss outcomewithout knowing anything about the coin.

Example 3 (Prior Prediction of a Coin Toss).
Beforeweperformany experimentswith the coin, we assume that the probability of heads θ canbe anything
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between zero and onewith equal probability, and the corresponding prior distribution is

p(θ) =



1, for 0 ≤ θ ≤ 1
0, otherwise

as depicted in Figure 1.
For a fixed value of θ, the probability of tossing head is

p( ỹ = head|θ) = θ

and the probability of tossing tail is
p( ỹ = tail|θ) = 1 − θ

We can combine this with the prior for θ to predict the probability of tossing heads using only this prior as
the source of information:

p( ỹ = head) =
∫ 1

0
p( ỹ = head|θ)p(θ)dθ =

∫ 1

0
θdθ =

[
θ2

2

]1

θ=0
=

1
2 − 0 =

1
2 .

Similarly,

p( ỹ = tail) =
∫ 1

0
p( ỹ = tail|θ)p(θ)dθ =

∫ 1

0
(1 − θ)dθ =

[
θ −

θ2

2

]1

θ=0
= 1 − 1

2 − 0 + 0 =
1
2 .

By redefining p( ỹ |θ), we canmake a prediction for the number of heads ỹ among an arbitrary number of
tosses ñ using the prior information. First, for a fixed θ and fixed ñ,

p( ỹ |θ) =
(
ñ
ỹ

)
θ ỹ (1 − θ)ñ−ỹ, ỹ = 0, 1, 2, . . . , ñ

and combining this with the prior:

p( ỹ) =
∫ 1

0

(
ñ
ỹ

)
θ ỹ (1 − θ)ñ−ỹdθ =

(
ñ
ỹ

)
B( ỹ + 1, ñ − ỹ + 1)

here B(x, y) is the beta function, and since

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

where Γ(x) is the gamma function, we canwrite

p( ỹ) =
(
ñ
ỹ

)
B( ỹ + 1, ñ − ỹ + 1) =

ñ!
ỹ!(ñ − ỹ)! ×

ỹ!(ñ − ỹ)!
(ñ + 1)! =

1
ñ + 1,

predicting all outcomes to be equiprobable, as expected from our intentions in using a flat prior.

Making predictions from the prior informationmay be useful if wewant to verify that our hypothesis predicts correct
outcomes. However, we are usually more interested inmaking predictions from the updated state of information - the
posterior.
In this case, the posterior predictive distribution is

p( ỹ |D) =
∫

p( ỹ |θ)p(θ |D)dθ

Consider an example of predicting a coin toss outcome based on the information learned in Example 1.

Example 4 (Posterior Prediction of a Coin Toss).
Let’s consider again the probability of tossing heads, but this timewewill be using the coin that we studied

8

https://en.wikipedia.org/wiki/Beta_function
https://en.wikipedia.org/wiki/Gamma_function


in Example 1. After tossing the coin 20 times, we learned that θ is distributed as depicted in Figure 4, and

p(θ |D) =



1627920 θ13(1 − θ)7, for 0 ≤ θ ≤ 1
0, otherwise.

The probability of tossing head on the next turn is
p( ỹ = head|θ, D) = p( ỹ = head|θ) = θ

as the coin has nomemory, and all the tosses are independent.
Observing head on the 21st toss now has probability:

p( ỹ |D) =
∫ 1

0
θp(θ |D)dθ = E [θ |D] = 14

22

Deriving a posterior prediction for the number of heads in n new tosses is a homework task for this chapter.

This example is often generalised as a famous problem of establishing whether the Sunwill rise tomorrow.

Example 5 (Will the Sun Rise Tomorrow?).
Pierre-Simon Laplace introduced this example to demonstrate how inference and prediction work together.
The example evaluates the probability of a statement “The Sun will rise tomorrow” within the Bayesian
framework.
Let θ be the probability of the sunrise on any given day. Hypothetically, before observing any sunrises, we
have no preference for the value of θ, expressedwith the uniform prior distribution:

p(θ) =



1, for 0 ≤ θ ≤ 1
0, otherwise.

Given the value of θ, and no other information relevant to the question of whether the sunwill rise tomor-
row, the probability that the sunwill rise tomorrow is p( ỹ = sunrise|θ) = θ. But we don’t know the value
of θ. What we are given is the observed data: the sun has risen every day on record. Laplace inferred the
number of days by saying that the universe was created about 6000 years ago, based on a young-earth
creationist reading of the Bible.
By performing the inference for θ, and then performing the prediction for a new sunrise tomorrow, we
obtain in general form:

p(“the sunwill rise tomorrow”|“it has risen every time on k days previously”) =

p( ỹ = sunrise|θ, D = (k, k)) =
∫ 1

0
θp(θ |D = (k, k))dθ = E [θ |D = (k, k)] = k + 1

k + 2 .

as
p(θ |D = (k, k)) =

p(D = (k, k) |θ)p(θ)∫ 1
0 p(D = (k, k) |θ)p(θ)dθ

=
θk∫ 1

0 θkdθ
= (k + 1)θk

and consequently ∫ 1

0
θp(θ |D = (k, k))dθ = (k + 1)

∫ 1

0
θk+1dθ =

k + 1
k + 2 .

If someone has observed the sun rising 10000 times previously, the probability it rises the next day is
10001/10002 ≈ 0.99990002. Expressed as a percentage, this is approximately a 99.990002% chance.
J.M. Keynes remarked in his book “A Treatise on Probability”, 1921, p. 82:

“No other formula in the alchemy of logic has exerted more astonishing powers. For it has
established the existence of God from the premiss of total ignorance; and it has measured with
numerical precision the probability that the sunwill rise to-morrow."
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When the integrals involved in performing predictions becomemore complex, we can employ numerical integration.
Let’s see how that works with predicting the weight of another cat after considering Example 2.

Example 6 (Posterior Prediction of Cat’sWeight).
In Example 2 we started with a uniform prior for the average weight of an adult domestic cat, and after
measuring a cat weighting 7 lb, we arrived to the joint posterior distribution of the average weight of a cat
and the variance of the population of cat weights depicted in Figure 6.

Let’s predict what will be the weight of another cat
that we canmeasure. As we assumed that the popula-
tion of cat weights is normal,

p( ỹ |µ, σ2) =
1

√
2πσ2

exp
{
−

( ỹ − µ)2

2σ2

}
Now the posterior predictive distribution of the
weight of a new cat will be:

p( ỹ |D) =
" ∞

0
p( ỹ |µ, σ2)p(µ, σ2 |D)dµdσ2 =

" ∞

0

1
√
2πσ2

exp
{
−

( ỹ − µ)2

2σ2

}
p(µ, σ2 |D)dµdσ2

Ourposterior p(µ, σ2 |D)was evaluated on afine grid,
and re-normalised. The result of that evaluation in R
is stored inmatrix posterior.
Now, wewill introduce another grid for the possible
weights of a new cat:
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Figure 8: The posterior predictive distribution
p( ỹ |D).

ygrid <- seq(0,50,0.1)

and for every value on this new ygrid, we will numerically integrate the posterior predictive distribution,
and re-normalise the result:
ydensity <- rep(0,length(ygrid))
predictive <- function(mu,sigma2,weight=0)

{ifelse(sigma2>0,dnorm(weight,mu,sqrt(sigma2)),0)}
for (i in 1:length(ygrid)) {

pointprediction <- outer(mugrid,sigma2grid,predictive,weight=ygrid[i])
ydensity[i] <- sum(pointprediction*posterior)

}
ydensity <- ydensity/sum(ydensity)
plot(ygrid,ydensity,type="l")

This evaluation is quite slow, due to the need to handle a grid approximation over three dimensions now.
The plot in Figure 8 is produced as the result.

Another approximation can be achieved when a sample from the posterior distribution is available (or a sample from the
prior for the prior predictive distribution). Wewill demonstrate this by replicating Example 4 using samples instead of
analytical derivation.

Example 7 (Sample Based Posterior Prediction of a Coin Toss).
Here we replicate Example 4 using samples from the posterior, and approximating the posterior predictive
distribution using these samples.
After tossing the coin 20 times, we learned that θ is distributed as

p(θ |D) =



1627920 θ13(1 − θ)7, for 0 ≤ θ ≤ 1
0, otherwise.
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which is the probability density function of a beta distribution Be(14, 8).
First, we can draw a large sample from this distribution:
postsample <- rbeta(1000,14,8)

Next, wewill take every value in this sample, and use it as the value of θ for the probability of tossing head
on the next turn:

p( ỹ = head|θ, D) = p( ỹ = head|θ) = θ.

predsample <- rbinom(1000,postsample,size=1)

Values inpredsamplewill be either1 for heador0 for tail, and therefore theposterior predictiveprobability
for tossing head on the next turn will be the proportion of ones in predsample

mean(predsample)

[1] 0.637

Compare this to the true posterior predictive probability calculated in Example 4 as
p( ỹ |D) =

14
22 ≈ 0.6363636

# Absolute error estimation:
mean(predsample) - 14/22

[1] 0.0006363636

Using a larger sample helps to reduce the approximation error:
postsample <- rbeta(10000,14,8)
predsample <- rbinom(10000,postsample,size=1)
mean(predsample)

[1] 0.6365

# Absolute error estimation:
mean(predsample) - 14/22

[1] 0.0001363636

Hypotheses Testing

UABC - Hypotheses Testing

https://youtu.be/YhFzLtE6CPM
Duration: 10m21s

The next milestone in statistical analysis is performing hypotheses testing. Situations when several alternative explana-
tions for a certain phenomenon are considered are very common. Selecting themost appropriate explanation is done by
performing some experiments, collecting data, and then using the evidence of these data to find which hypothesis is
more plausible than the rest.
Hypotheses testing in Bayesian framework is performed very differently to the approaches taken in classical statistics.
Every hypothesis will be representedwith a separate statistical modelM1,M2, . . .; thesemodels will have their own
prior probabilities p(M1), p(M2), . . .; andmodel selection will be performed by evaluating correspondingmodel poste-
rior probabilities p(Mi |D).
Let’sfirst consider a simple case of having just two alternative hypotheses, and therefore considering only two alternative
modelsM1 andM2.
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Wewill be looking for the odds of modelM1 to be better thanmodelM2 a posteriori:
p(M1 |D)
p(M2 |D)

given their prior odds:
p(M1)
p(M2)

.

By applying Bayes theorem, we easily obtain
p(M1 |D)
p(M2 |D)

=
p(M1)
p(M2)

×
p(D |M1)
p(D |M2)

whichmeans that the posterior odds are equal to the prior odds multiplied by themodel likelihood ratio. This model
likelihood ratio is usually known as the Bayes factor. The elements in the numerator and the denominator of the Bayes
factor are called themarginal likelihoods for the two alternative models, and can be obtained bymarginalising out model
parameters:

p(D |Mi ) =
∫

p(D |Mi, θi )p(θi |Mi )dθi

Notice, that it is exactly the same integral as the one that is used for normalising the posterior of model parameters. The
only difference is notational — here wemade an explicit reference to a specificmodel.
In practice the alternative hypotheses are frequently considered to be equiprobable a priori, and therefore frequently

p(M1)
p(M2)

= 1.

Posterior odds of themodels are self explanatory— if the odds are, for example, 2:1, that means that the first model is
twice as likely as the second one. If the odds are, for example, 1 000 000:1, that means that the first model is a million
times as likely as the second one.
Sir Harold Jeffreys proposed an informal scale for assigning rough descriptive statements about standards of evidence
in scientific investigation to the values of the Bayes factor. We consider a slightly modified version of his scale proposed
by Kass and Raftery (1995), hereB is used for the value of the Bayes factor:

2 ln(B) B Evidence Support
0 to 2 1 to 3 Not worthmore than a baremention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

These categories, however, are not a calibration for the Bayes factor, as it already provides ameaningful interpretation
as probability, but they are useful for informal descriptions.
Let’s consider how this simple setup of comparing just two alternative hypotheses works on a simple example.

Example 8 (Gender Bias in Smoking).
The R package MASS comes with a data set survey containing the responses of 237 Statistics I students at
the University of Adelaide to a number of questions.
Wewill consider answers to two of the questions:
• Student’s sex, in this survey “male” or “female”
• Student’s smoking habits, in this survey “never”, “occasionally”, “regularly”, “heavy”

Wewill investigate whether the probability of smoking is the same or not the same among the two sexes.
First wewill perform some preliminary processing of the data, to summarise smoking habits in two cate-
gories smoker and nonsmoker, and then generate a contingency table with the sex of the students:
require(MASS)
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Loading required package: MASS

sex <- survey$Sex
smoking <- factor(as.numeric(survey$Smoke == "Never"),

labels=c("smoker","nonsmoker"))
table(sex,smoking)

smoking
sex smoker nonsmoker

Female 19 99
Male 28 89

We obtain the data stating that Sf = 19 out of Nf = 118 females smoke, and Sm = 28 out of Nf = 117
males smoke. Twomissing values have been omitted.
Wewill consider two hypotheses:
H1: Probability of being a smoker is the same inmale and female populations
H2: Probability of being a smoker is different in male and female populations
Wewill formalise these hypotheses with two statistical models:
M1: Sf ∼ Bi(θ; Nf ), Sm ∼ Bi(θ; Nm )

M2: Sf ∼ Bi(θ f ; Nf ), Sm ∼ Bi(θm ; Nm )

Note, that probability of smoking is the same in the first model, andmay be different in the second one. We
assign uniform priors between 0 and 1 to all of the smoking probabilities: θ, θ f , θm .
Likelihood for the first model is

p(Sf , Sm, Nf , Nm |M1, θ) =
(
Nf

Sf

)
θS f (1 − θ)N f −S f ·

(
Nm

Sm

)
θSm (1 − θ)Nm−Sm

and for the secondmodel is
p(Sf , Sm, Nf , Nm |M2, θ f , θm ) =

(
Nf

Sf

)
θ
S f

f
(1 − θ f )N f −S f ·

(
Nm

Sm

)
θSm
m (1 − θm )Nm−Sm

Assuming that both hypotheses are equiprobable:
p(M1)
p(M2)

= 1
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we computemarginal likelihoods for the twomodels:

p(Sf , Sm, Nf , Nm |M1) =
∫ 1

0

(
Nf

Sf

)
θS f (1 − θ)N f −S f ·

(
Nm

Sm

)
θSm (1 − θ)Nm−Sm · 1 dθ

=
Nf !

Sf !(Nf − Sf )! ×
Nm !

Sm !(Nm − Sm )!

∫ 1

0
θS f +Sm (1 − θ)N f +Nm−S f −Sm dθ

=
Nf !

Sf !(Nf − Sf )! ×
Nm !

Sm !(Nm − Sm )! × B(Sf + Sm + 1, Nf + Nm − Sf − Sm + 1)

=
Nf !

Sf !(Nf − Sf )! ×
Nm !

Sm !(Nm − Sm )! ×
(Sf + Sm )!(Nf + Nm − Sf − Sm )!

(Nf + Nm + 1)!

=
118! 117! 47! 188!
19! 99! 28! 89! 236! =

1445284062650182344369845
8008083642837644483297741204 ≈ 0.0001804781

p(Sf , Sm, Nf , Nm |M2) =
" 1

0

(
Nf

Sf

)
θ
S f

f
(1 − θ f )N f −S f ·

(
Nm

Sm

)
θSm
m (1 − θm )Nm−Sm dθ f dθm

=
Nf !Nm !

Sf !(Nf − Sf )!Sm !(Nm − Sm )!

" 1

0
θ
S f

f
(1 − θ f )N f −S f θSm

m (1 − θm )Nm−Sm dθ f dθm

=
Nf !Nm !

Sf !(Nf − Sf )!Sm !(Nm − Sm )!B(Sf + 1, Nf − Sf + 1)B(Sm + 1, Nm − Sm + 1)

=
Nf !Nm !

Sf !(Nf − Sf )!Sm !(Nm − Sm )! ×
Sf !(Nf − Sf )!

(Nf + 1)! ×
Sm !(Nm − Sm )!

(Nm + 1)!

=
1

(Nf + 1)(Nm + 1)
=

1
119 · 118 =

1
14042 ≈ 0.0000712149

The Bayes factor for preferringM1 overM2 is
p(Sf , Sm, Nf , Nm |M1)
p(Sf , Sm, Nf , Nm |M2)

=
1445284062650182344369845 · 14042
8008083642837644483297741204 ≈ 2.53

which, informally, corresponds to quite weak evidence in preference of modelM1. And the posterior odds
of themodels are:

p(M1 |Sf , Sm, Nf , Nm )
p(M2 |Sf , Sm, Nf , Nm )

=
p(M1)
p(M2)

×
p(Sf , Sm, Nf , Nm |M1)
p(Sf , Sm, Nf , Nm |M2)

≈ 2.53

A posteriori, ModelM1 is about 2.5 times more plausible than modelM2. Therefore hypothesisH1 is
about 2.5 timesmore plausible than hypothesisH2. These odds are of relatively small scale, demonstrating
relatively weak preference for hypothesisH1, and therefore we recommend performing further survey to
collect more data.

In a more general case, whenwe havemore than two hypotheses, and corresponding statistical models, we need to find
the probability mass distribution among the alternativemodels:

p(Mi |D) =
p(D |Mi )p(Mi )∑k
j=1 p(D |M j )p(M j )

where k models are considered in total with prior model probabilities p(Mi ) andmarginal likelihoods p(D |Mi ).

https://www.stat.washington.edu/raftery/Research/PDF/kass1995.pdf
Note, that hypotheses testing in Bayesian framework is very different to the way it is performed in the classical Neyman-
Pearson framework. Amongmany other benefits, the Bayesian approach allows

• Evaluating evidence in favour of the null hypothesis;
• Incorporating external information into evaluation of evidence about a hypothesis;
• Working with non-nestedmodels;
• Performing variable selection and guiding evolutionarymodel-building process.
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We recommend reading a paper by Kass and Raftery, 1995, “Bayes Factors”, Journal of the American Statistical Association
90(430), pp. 773–795, to gain better understanding of the Bayesian hypotheses testing approach and how it compares
to classical hypothesis testing.

Our course includes a separate chapter (inWeek 10) on advanced topics in Bayesian hypotheses testing, where wewill
consider several approaches to approximating marginal likelihoods in the cases when analytical derivation becomes
intractable.

Conjugate Priors and the BinomialModel

UABC - Conjugate Priors

https://youtu.be/HskcqW-Oi_o
Duration: 12m03s

Beforemodern electronic computers becamewidely available, numerical evaluation of posteriors, predictive distribu-
tions, andmarginal likelihoods wasn’t feasible. Researchers had tomake every effort to make analytical evaluation work.
One of the common approaches to performing inference with guaranteed analytical solutions is to impose limitations on
the types of priors used in inference. In this section we discuss the property of conjugacy.
Note that the utility of conjugacy is not limited to the cases when numerical evaluation is impossible, and this approach
is not purely the thing of the past. Many contemporarymethods rely on conjugacy to achieve astonishing performance
improvement. Some samplingmethods, wewill talk about these later, may take days to produce a result for a Bayesian
inference problem, while employing conjugate priors in these methods may decrease computational time to mere
seconds.
Whileworkingwith some statistical models, it is possible to find a family of distributions that is conjugate to the likelihood.
This means that if we select a prior from this family of distributions, the posterior will also be in this family.
Consider a specific case of working with the binomial model:

k ∼ Bi(θ; n), D = (k, n), k ∈ {0, . . . , n}, θ ∈ [0, 1], n ∈ N

The likelihood for this model, as introduced earlier, is

p(D |θ) = p(k |θ; n) =
(
n
k

)
θk (1 − θ)n−k

Wewill now select a prior for θ to be an arbitrary beta distribution:

p(θ) = p(θ |α, β) = Be(θ |α, β) =
θα−1(1 − θ)β−1

B(α, β)
, α > 0, β > 0.

We can nowwork out the posterior distribution of θ given D,
p(θ |D) ∝ θα−1(1 − θ)β−1θk (1 − θ)n−k

∝ θα+k−1(1 − θ)β+n−k−1

∝ Be(α + k, β + n − k)

Notice, howwe avoid the trouble of working with the constants by performing calculations down to proportionality and
normalising the result in the end.
Herewe demonstrated, that when the prior for the probability of success in the binomial model is a beta distribution,
the posterior is also a beta distribution with different (updated) parameters. We therefore conclude that the beta
distribution is a conjugate prior to the binomial likelihood. When performing inference using conjugate priors, all we
need to do is to formulate a rule for updating prior parameters. In the binomial model case it is:

α∗ = α + k

β∗ = β + n − k
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Intuitively, α − 1 corresponds to the number of successes and β − 1 corresponds to a number of failures in α + β − 2
previous trials. The uniform prior is a particular case of this beta prior when we have no previous observations, and
therefore α = β = 1.

Example 9 (Conjugate Priors for Example 1).
Let’s consider the problem in Example 1 once again, but this timewewill rely on using conjugate priors to
perform inference. As before, our likelihood is

p(D |θ) =
(
n
y

)
θk (1 − θ)n−k

The prior for θ is still going to be uniform from zero to one, but in this case we recognise that this uniform
prior is a particular case of the beta prior:

p(θ) = Be(1, 1)

First consider the case in Example 1, when we were using D = (7, 10). As our prior is conjugate to the
likelihood, we can perform inference using conjugacy property, and conclude that the posterior is

p(θ |D) = Be(1 + 7, 1 + 10 − 7) = Be(8, 4)

which has the probability density function that looks exactly as the result in Figure 3.
Next, consider that we observe D2 = (6, 10) as the second observation. Using the same property of
conjugacy we conclude that

p(θ |D, D2) = Be(8 + 6, 4 + 10 − 6) = Be(14, 8)

which is, again, exactly what is depicted in Figure 4.

In the case when we observe a series of datasets D1 = (k1, n1), D2 = (k2, n2), . . . , Dn = (kn, nn ), the update of the
parameters of this conjugate prior becomes:

α∗ = α +

n∑
i=1

ki

β∗ = β +

n∑
1=1

ni −
n∑
i=1

ki

https://en.wikipedia.org/wiki/Conjugate_prior
A comprehensive list of conjugate priors is available onWikipedia.

We conclude this chapter with another example of inference and prediction using the binomial model that demonstrates
that this model is applicable not only to coin tosses.

Example 10 (Amazon Reviews).
I was trying to buy a used copy of Gelman et al. Bayesian Data Analysis book from Amazon. This book
is available used from several sellers for approximately the same price. Consider three sellers with the
following ratings:
• Seller X: 97% positive out of 656,544 reviews
• Seller Y: 97% positive out of 1,080 reviews
• Seller Z: 99% positive out of 3,473 reviews

Which reseller is likely to provide the best service? Think for a secondwhich one you’d intuitively select.
Do not jump into the conclusion that the seller with the highest proportion of positive reviews is necessarily
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the best. Consider a simpler case, say we have just two sellers: one seller (A) has 90 positive reviews out of
100, the other (B) has two reviews, both positive. You could say that one has 90% approval while the other
has 100% approval, but is the onewith 100% approval better?

Let θa be the probability of a customer being satisfied
with the seller having 90 positive reviews out of 100.
Assuming uniform prior on θa , the posterior will be
(by conjugacy)

p(θa |Da ) = Be(91, 11).

Let θb be the probability of a customer being satis-
fied with the seller with 2 positive reviews out of 2.
Assuming the same uniform prior on θb we arrive to

p(θb |Db ) = Be(3, 1).

These two posteriors are plotted in Figure 9: the pur-
ple line is for θa while the green line is for θb .
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Figure 9: The posteriors for θa and θb compared.

Let’s find the probability that a random sample from p(θa |Da ) is greater than a random sample from
p(θb |Db ), that will be the probability that seller A is better.

p(θa > θb |Da, Db ) =
1

B(3, 1)

∫ 1

0
(1 − Iθb (91, 11))θ2bdθb ≈ 0.713

where Ix (α, β) is the regularised incomplete beta function and it is the c.d.f. for the beta distribution. So, it
is more probable that seller Awill provide a better experience.

Now let’s return to our three sellers for Gelman et al.
book. We will consider three customer satisfaction
probabilities θX, θY , θZ . Theywill have uniform priors
from 0 to 1. Their posteriors are therefore going to
be:

p(θX |DX ) = Be(636849, 19697)
p(θY |DY ) = Be(1049, 33)
p(θZ |DZ ) = Be(3439, 36)

These distributions are plotted in Figure 10: the pur-
ple line is for θX , the green line is for θY , and the blue
line is for θZ . The distributions are quite clearly sep-
arated, so it is virtually impossible that sellers X or Y
are better than seller Z.
In general, going by averages aloneworks when you
have a lot of customer reviews. But when you have
a small number of reviews, going by averages alone
could bemisleading.
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Figure 10: The posteriors for θX and θY and θZ
compared.

Review Exercises

Task 1.
Consider the binomial model with data D = (k, n) where k ≥ 0 is the number of successes in n > 0 trials:

k ∼ Bi(θ; n), 0 ≤ θ ≤ 1.

Assume a beta prior on θ:
p(θ) = Be(α, β),

and derive the posterior predictive distribution for observing new D̃ = (k̃, ñ), where ñ is a fixed constant.
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Task 2.
Consider the Poissonmodel:

k ∼ Po(λ), λ > 0, k ∈ Z+

and demonstrate that a gamma prior for the rate parameter λ is conjugate:
λ ∼ Ga(α, β).

Derive corresponding parameter update for posterior inference.

Task 3 (BDA3, Exercise 2.11.1).
Suppose there is Be(4, 4) prior distribution on the probability θ that a coin will yield a headwhen spun in a
specifiedmanner. The coin is independently spun ten times, and heads appear fewer than 3 times. You are
not told howmany heads were seen, only that the number is less than 3. Calculate your posterior density
(up to a proportionality constant) for θ and sketch it.
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Answers to tasks

Answer to Task 1. Wehave
k ∼ Bi(θ; n), 0 ≤ θ ≤ 1,

p(θ) = Be(α, β).

The prior is conjugate to the likelihood, and therefore the posterior will be:
p(θ |D) = Be(α + k, β + n − k).

The posterior predictive distribution for observing new D̃ = (k̃, ñ) is

p(D̃ |D) =
∫ 1

0

(
ñ
k̃

)
θ k̃ (1 − θ)ñ−k̃

θα+k−1(1 − θ)β+n−k−1

B(α + k, β + n − k)
dθ

=

(
ñ
k̃

)
1

B(α + k, β + n − k)

∫ 1

0
θα+k+k̃−1(1 − θ)β+n−k+ñ−k̃−1dθ

=

(
ñ
k̃

)
1

B(α + k, β + n − k)
B(α + k + k̃, β + n − k + ñ − k̃)

=

(
ñ
k̃

)
B(α + k + k̃, β + n − k + ñ − k̃)

B(α + k, β + n − k)
,

where k, n, ñ, α, and β are fixed constants, and k̃ is the random variable for which p(D̃ |D) defines the probability mass
function. This distribution is called the beta-binomial distribution.
Answer to Task 2. Wehave

p(k |λ) =
λk e−λ

k!

p(λ) =
βα

Γ(α)
λα−1e−βλ

Wewill derive the posterior, working down to proportionality constants:
p(λ |k) ∝ λk e−λλα−1e−βλ ∝ λα−1+k e−(β+1)λ ∝ Ga(α + k, β + 1)

As the posterior works out to be also a gamma distribution, this demonstrates that the prior is conjugate, and the
parameter update is

α∗ = α + k

β∗ = β + 1

Note, that theWikipedia page on conjugate priors lists updates for n independent observations, and this problemwas
concernedwith only one observation.
Answer to Task 3 (BDA3, Exercise 2.11.1). Themodel is

p(k |θ) =
(
n
k

)
θk (1 − θ)n−k

p(θ) ∝ θ3(1 − θ)3

With n = 10, we are only told that k < 3.
The posterior is conditioned only on the available informa-
tion, i.e. k < 3:
p(θ |k < 3) ∝ p(θ)p(k < 3|θ)

∝ θ3(1 − θ)3
2∑

k=0

(
n
k

)
θk (1 − θ)10−k

∝ θ3(1 − θ)13 + 10 θ4(1 − θ)12 + 45 θ5(1 − θ)11

This could be evaluated on afine grid and renormalised using
the following R code:
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Figure 11: The posterior p(θ |k < 3).
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thetagrid <- seq(0,1,0.01)
post <- function(theta) {

theta^3*(1-theta)^13 + 10*theta^4*(1-theta)^12+45*theta^5*(1-theta)^11
}
postgrid <- vapply(thetagrid,post,numeric(1))
postgrid <- postgrid/sum(postgrid)*100

and plotted
plot(thetagrid,postgrid,type="l")
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